Giant Chips Boost Supercomputing Capabilities

CPUs the size of dinner plates are enabling computer simulations that are two orders of magnitude better than conventional supercomputers are capable of.

wafter-scale
(Credit: redsparrow.eu/Shutterstock)

Newsletter

Sign up for our email newsletter for the latest science news
 

The ability to simulate the way matter behaves on the atomic scale is revolutionizing materials science and everything related to it. This approach is producing new materials with exotic properties, resilient alloys for nuclear power and a new understanding of protein folding, to name just a few applications.

These advances are largely the result of ever more powerful computing machines, which aim to make simulations bigger, faster and longer.

That’s the goal but the reality is more nuanced. More powerful computers have allowed researchers to simulate huge blobs of matter containing trillions of atoms. But even on the world’s most powerful exascale computers, a full month of compute produces just a few microseconds of simulated time.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group